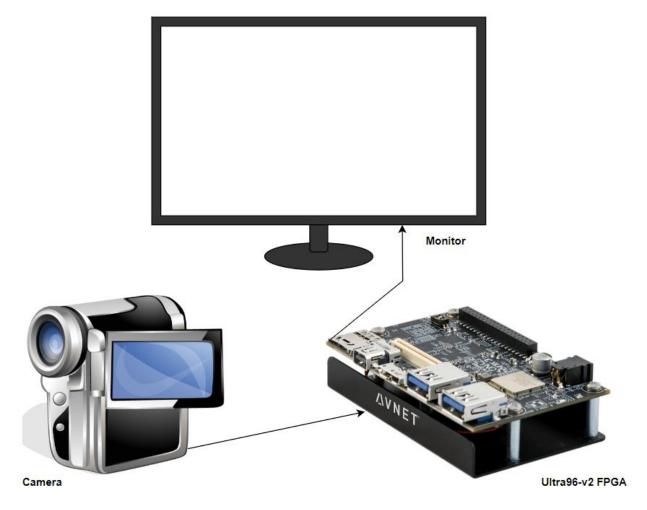

Video Pipeline for Computer Vision sddec24-06 V-PIPE

Team members: Liam Janda, Taylor Johnson, Ritwesh Kumar, Deniz Tazegul Client: JR Spidell Advisor: Dr. Phillip Jones


Problem Statement

- Video pipeline for computer vision system
- Off the shelf components/open source software
- Wide range of applications
- Inspired by improving the quality of life for wheelchair bound individuals with limited mobility

Project Plan

Project Conceptual Sketch

Project Overview

- Developing a FPGA-based video pipeline
 - MIPI-connected camera module
 - DisplayPort output
- Software executes in Ubuntu Linux OS
- Adapting previous team's implementation
- PYNQ libraries
- STRETCH GOAL: Pass video through a machine learning algorithm

IMX219 Image Sensor

Applications to Machine Learning (ML)

- Medical imaging
- Self-driving cars
- Search and rescue
- Eye-tracking devices

Eye-Tracking Algorithm by a Previous SD Team

Market Research

Producer	Pros	Cons
V-PIPE (Ours)	Off-the-shelf hardware	Proper configuration
(intel [°])	Efficient	Specialized components with longer development time
LUCI	Attachable to existing wheelchairs	Niche market
Eyes@nlt	Easily configurable software	Requires own hardware

Requirements

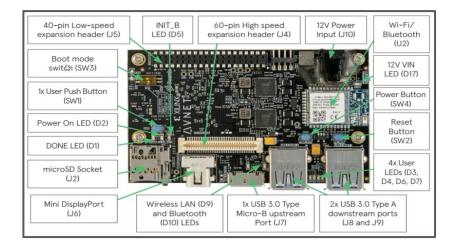
- Constraints:
 - Output video to a DisplayPort monitor in real-time
 - Latency video standards ~5-18 seconds
 - Real-time <100 ms
 - Route data using a Linux image in a PYNQ environment
 - Must execute using an Ultra96-v2 FPGA board
- Non-Constraints:
 - Use a **Sony IMX219QH5-C** image sensor
 - 1920x1080p standard Full HD resolution at 30 fps standard live video format
 - Video stream in **RGB8** color format
 - Operate in a variety of lighting conditions

Latency standards & Measurements

Type of Latency	Amount of Latency
Standard Broadcast Latency	5-18 seconds
Low Latency	1-5 seconds
Ultra-Low Latency	Less than 1 second
Real-Time Latency	Unperceivable to users

How will we measure the latency?

 Simple python script that takes the difference between the start and end of the data transmission


https://www.pubnub.com/guides/ whats-so-important-about-low-lat ency/

Engineering Standards

Engineering Standards	Relevance
IEEE Std 2977 2021	MIPI controller data conversion
IEEE Std 802.11 2016	Wifi connectivity: Jupyter Notebook server
I2C Protocol	Data communication with camera
AMBA AXI4 Protocol	Data transport within the FPGA

System Design

Technology Used

Anatomy of Ultra96-v2 FPGA

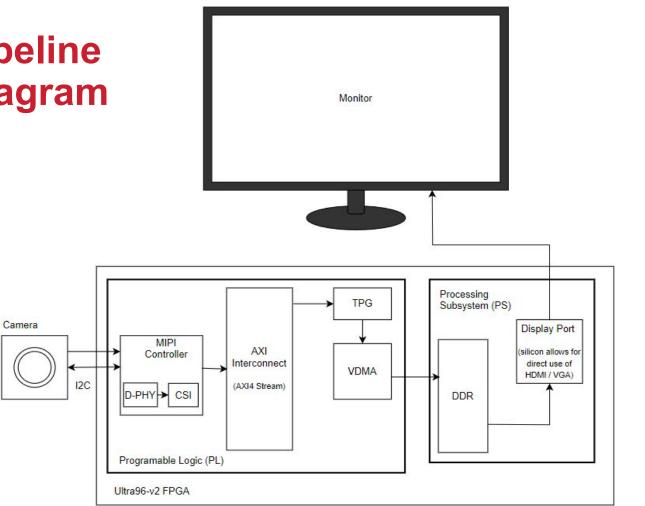
External project complexity

- Well-established technology
 - Ultra96-v2 FPGA made in 2018
 - IMX219 sensor made in 2016

Internal project complexity

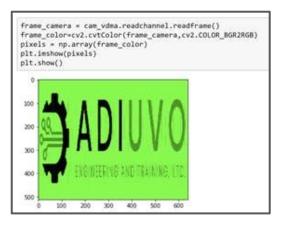
• Multiple hardware & software components & subsystems

Hardware/Software


- **PYNQ** runs a Jupyter Notebook server
- Non-PYNQ runs on a terminal via TeraTerm

- Vivado custom hardware overlays
- **Debug:** ILA (Integrated Logic Analyzer) captures and analyzes I/O signals

Video Pipeline Block Diagram



Changes from Previous Teams

- 1. PYNQ implementation instead of shell scripts or C
- 2. IMX219 sensor instead of OV5647
- 3. 4 data lanes instead of 2
- 4. VDMA instead of frame buffer

Test Plan

- Read from registers with known values
- Read from status registers
- Visual verification
 - DisplayPort to monitor
 - Jupyter Notebook
- Acceptance testing

Potential Risks and Mitigation

- File/OS corruption mitigation
 - Backup SD cards
 - Shutdown Ultra96 using terminal
- Proper handling and storing of hardware

Project Resource/Cost Estimate

Resource / Component	Cost
Budget	\$3,000
2 Ultra96-v2 FPGA Boards	2 * (\$300 to \$600) = \$600 to \$1200
IMX219/OV5647 Image Sensors	\$10 + \$20 = \$30
2 SD cards: 1 PYNQ and 1 non-PYNQ	\$15 + \$20 = \$35
(1 DisplayPort Cable + 2 USB Mini-to-USB A Cables + 1 Power Supply) * 2 sets	2 * (\$15 + \$10 * 2 + \$25) = \$120
(JTAG board + Ultra96-v2 Daughter Card) * 2 sets	2 * (\$40 + \$125) = \$330
Total	\$1115 to \$1715

Conclusion

Project Milestones

Milestone #2 Milestone #4 Complete hardware Create software setup and run driver and test files to Milestone #5 exisiting code properly interface Output the video with the Ultra-96 stream to a display monitor 2 5 3 Milestone #3 Milestone #1 Design the video Illustrate & describe pipeline mapping component inputs and outputs connections

Current Project Status

• Developed understanding of architecture and component subsystems

 Tracking the inputs/outputs required for each component and the appropriate register values

• Setup hardware and run existing code

• Writing the code needed to implement our design

Plan For Next Semester

- Transfer code to PYNQ environment
 - Configure image sensor and MIPI component
 - Configure board to output through DisplayPort

Replace test pattern generator with VDMA to accept image sensor

Team Member Responsibilities

Team Members/Roles:

Ritwesh Kumar - Image Sensor to MIPI Controller

• Deniz Tazegul - MIPI Controller to VDMA

• Liam Janda - VDMA to DDRM

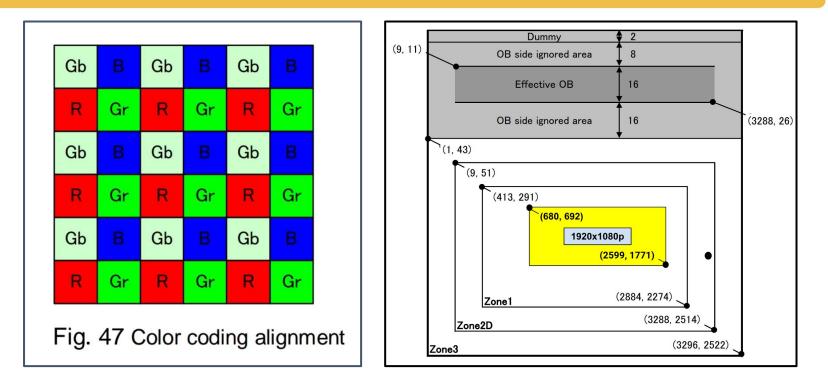
• Taylor Johnson - DDRM to Output Display

Questions?

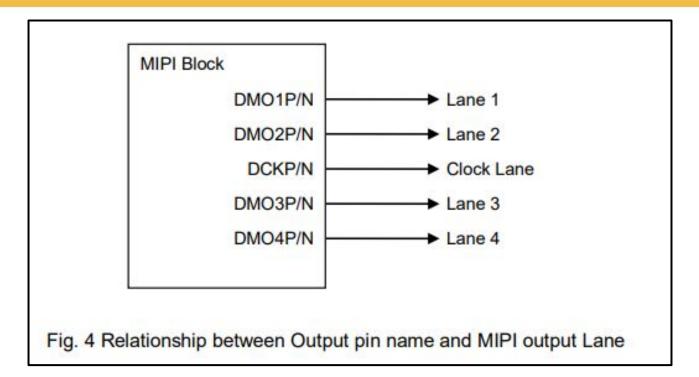
Project Vocabulary

- IMX219 image sensor: camera
- **MIPI:** mobile industry processor interface
- CSI: camera serial interface
- **D-PHY:** physical communication layer
- VDMA: video direct memory access
- **DDR:** double data rate (memory)
- **FPGA:** field programmable gate array

Ultra96-v2 FPGA Board


• **PYNQ:** <u>python productivity for Zynq</u> (python embedded systems developers)

Backup Slides


IMX219 Image Sensor

RGB Bayer Filter & 1920x1080p

MIPI Transmit

4 Lane MIPI Transmit CSI-2

Index	Byte	Register Name	RW	Comment	Default (HEX)	Remark
0x0114	[1:0]	CSI_LANE_MODE	RW	03: 4Lane 01: 2Lane	03	Setting before "standby cancel"

Data rate: Max. 755 Mbps/lane(@4lane), 912Mbps/Lane(@2lane)

I/O Pixel and I/O System Clock (Code)

- Frame length: 256-65,534
 - 1113 in code

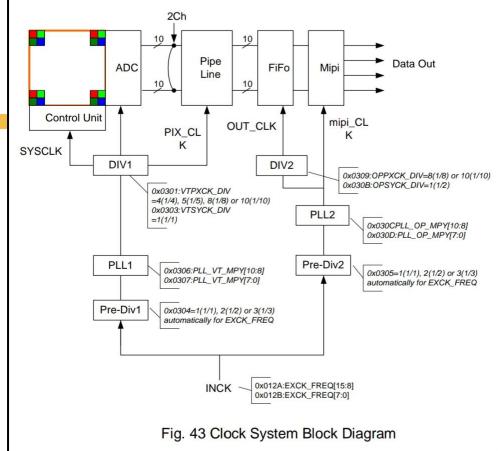
- Line length: 3448-32752
 - 3448 in code

• Min Line blanking: 168 (IMX)

• Min Frame blanking: 32 (IMX)

Index	Byte	Register Name	RW	Comment	Re-Time	Default (HEX)	Embo DL
0x1140	[7:0]	min frame length		Minimum Frame Length allowed. Value both sensor dependent		01	
0x1141	[7:0]	lines	RO	Format: 16-bit unsigned integer Units: Lines		00	
0x1142	[7:0]	max_frame_length_		Maximum possible number of lines per Frame, Value sensor dependent		FF	
0x1143	[7:0]	lines	RO	Format: 16-bit unsigned integer Units: Lines		FE	
0x1144	[7:0]	min_line_length_pck		Minimum Line Length allowed. Value sensor dependent. But setup is possible at a		0D	
0x1145	[7:0]		RO	smaller value * Format: 16-bit unsigned integer Units: Pixel Clock		78	
0x1146	[7:0]			Maximum possible number of pixel clocks per line. Value sensor dependent		7F	
0x1147	[7:0]	max_line_length_pck	RO	Format: 16-bit unsigned integer Units: Pixel Clock		F0	
0x1148	[7:0]	min line blocking ook	RO	Minimum line blanking time in pixel clocks Format: 16-bit unsigned integer Units: Pixel		00	
0x1149	[7:0]	min_line_blanking_pck	RO	Clock		A8	
0x114A	[7:0]			Minimum frame blanking in video timing lines		00	
0x114B	[7:0]	min_frame_blanking_lines	RO	Format: 16-bit unsigned integer Units: Pixel Clock		20	

* possible to setup up to D60 (HEX)


Datasheet Clock Setting Examples

Interface	CSI-2	CSI-2	CSI-2	
ADC bit width	10	10	10	
Data Mode	Raw10	Raw10	Raw10	
FPS	30 frame/s	180 frame/s	21 frame/s (^{*1})	
Lanes	4	4	2	
Bin	Full-Pel	2 (V) X2 (H) analog	Full-Pel	
Sub	ruii-rei	(special) binning	rui-rei	
Output Size (H, V)	3280 x 2464	1408 x 792	3280 x 2464	
pll1_vt_freq	702 MHz	702 MHz	456 MHz	
EXCK_FREQ	12	12	12	
VTSYCK_DIV	1	1	1	
vt_pix_clk_div	5	5	10	
Pix Rate	280.8M pix	280.8M pix	182.4M pix	
Actual freq (VTCK)	140.4 MHz	140.4 MHz	91.2 MHz	
pll2_op_freq	726 MHz	726 MHz	912 MHz	
op_sys_clk_div	1	1	1	
op_pix_clk_div	10	10	10	
de-rating	1	1	1	
Output Lanes	4	4	2	
Actual freq (OPCK)	72.6 MHz	72.6 MHz	91.2 MHz	
Actual MIPI-freq (byte)	90.75 MHz	90.75 MHz	114 MHz	
Speed/Lane (Ch)	726 Mbps	726 Mbps	912 Mbps	
Total Output Rate	2.904 Gbps	2.904 Gbps	1.824 Gbps	

Ssddec24-proj006 | Video Pipeline for Computer Vision

Clock Diagram

- Max data transmission = (bits per CSI lane * # of CSI lanes) / Data rate
- Data rate = length * height * frame rate * bit pixel depth
- Bit pixel depth = bits per pixel * # of channel => RGB = 8 bits * 3 channels = 24
- => (755 Mbps * 4 lanes) / (1920 * 1080 * 24) means that 3.02 Gbps data rate and 60.68 fps are possible for 4 Lane MIPI Tx at 1920x1080p

Data rate: Max. 755 Mbps/lane(@4lane), 912Mbps/Lane(@2lane)

Frame Rate

5-5 Frame Rate Calculation Formula Frame rate in all-pixel scan mode is calculated by the followings. $Frame_Rate[frame/s] = \frac{1}{Time_per_Line[sec] \times (Frame_Length)}$ $Time_Per_Line_[sec] = \frac{Line_Length_pck[pix]}{2 \times Pix_Clock_Freq[MHz]}$

Min/max MIPI-freq

0.4400	[7.0]			
0x116C	[7:0]	1		
0x116D	[7:0]	min on niv alk frog mhz	RO	Minimum output pixel clock frequency Format: IEEE 32-bit float Units: MHz
0x116E	[7:0]	min_op_pix_clk_freq_mhz	KU	20 MHz
0x116F	[7:0]			
0x1170	[7:0]			
0x1171	[7:0]		DO	Maximum output pixel clock frequency
0x1172	[7:0]	max_op_pix_clk_freq_mhz	RO	Format: IEEE 32-bit float Units: MHz 114.5 MHz
0x1173	[7:0]]		

MIPI Freq (Google IMX Driver Code)

• Design metric: 30 fps live video industry standard

Frame rate = 47.5 < 60.68 fps limit, frame length = 1113, line length = 3448

• Verify

=> Time per line = 1 / (Frame rate * Frame length) = **18915 ns** (matches IMX code)

=> MIPI-freq (bytes) = Line length / (2 * Time per line) = **91.15 MHz**

Speed = MIPI-freq * 8 * 4 lanes = 2.92 Gbps < 3.02 Gbps 4 Lane max data rate

Clock Speeds (<u>Code</u>)

EXCK (external clock) frequency: 6-27 MHz, 24 MHz
 in code

PLL input clock frequency: 6-27 MHz, 24-27 MHz in code

 PLL multiplier: 8-2047, 57 in code for PLL1 and 114 in code for PLL2

- PLL output clock frequency: 432-916 MHz
 - 432 Mhz < 729.15 MHz in code < 916 Mhz

Ssddec24-proj006 | Video Pipeline for Computer Vision

Index	Byte	Register Name	RW	Comment	Re-Time	Default (HEX)	Embd DL
0x1100	[7:0]					40	
0x1101	[7:0]	The second second second second		Minimum external clock frequency Format: IEEE 32-bit float		CO	
0x1102	[7:0]	min_ext_clk_freq_mhz	RO	Units: MHz 6 MHz (= min_ext_clk_freq_mhz)		00	
0x1103	[7:0]			6 MHz (= min_ext_cik_freq_mnz)		00	
0x1104	[7:0]					41	
0x1105	[7:0]			Maximum external clock frequency		D8	
0x1106	[7:0]	max_ext_clk_freq_mhz	RO	Format: IEEE 32-bit float Units: MHz 27 MHz (= max_ext_clk_freq_mhz)		00	
0x1107	[7:0]					00	
0x1108	[7:0]			Minimum Pre PLL divider value		00	
0x1109	[7:0]	min_pre_pll_clk_div	RO	Format: 16-bit unsigned integer		01	
0x110A	[7:0]			Maximum Pre PLL divider value		00	
0x110B	[7:0]	max_pre_pll_clk_div	RO	Format: 16-bit unsigned integer		0D	
0x110C	[7:0]					40	
0x110D	[7:0]	min_pll_ip_freq_mhz		Minimum PLL input clock frequency		CO	
0x110E	[7:0]		RO	Format: IEEE 32-bit float Units: MHz 6 MHz		00	
0x110F	[7:0]					00	
0x1110	[7:0]					41	
0x1111	[7:0]		Maximum PLL input clock frequency	20		D8	
0x1112	[7:0]	max_pll_ip_freq_mhz	RO	Format: IEEE 32-bit float Units: MHz 27 MHz (= max_ext_clk_freq_mhz)		00	
0x1113	[7:0]					00	
0x1114	[7:0]		Minimum PLL multiplier		00		
0x1115	[7:0]	min_pll_multiplier	RO	Format: 16-bit unsigned integer		08	
0x1116	[7:0]			Maximum PLL Multiplier		07	
0x1117	[7:0]	max_pll_multiplier	RO	Format: 16-bit unsigned integer		FF	
0x1118	[7:0]					43	
0x1119	[7:0]		20	Minimum PLL output clock frequency Format: IEEE 32-bit float		D8	
0x111A	[7:0]	min_pll_op_freq_mhz	RO	Units: MHz		00	
0x111B	[7:0]	1		432 MHz		00	
0x111C	[7:0]					44	
0x111D	[7:0]			Maximum PLL output clock frequency Format: IEEE 32-bit float		65	
0x111E	[7:0]	max_pll_op_freq_mhz	RO	Units: MHz		00	
0x111F	[7:0]			916 MHz		00	

37

Output Freq / PLL2_OP Freq (<u>Code</u>)

Output pixel clock frequency (OPCK) = MIPI-freq (bytes) * 8 / PLL2 multiplier (10 in code)

=> OPCK = **72.915 MHz**

=> OPCK is in range: 20 MHz min < **72.915 MHz** < 114.5 MHz max

PLL2 Output Clock Frequency (PLL2_OP) = OPCK * PLL2 multiplier (10 in code)

```
=> PLL2_OP = 729.15 MHz
```

=> PLL2_OP is in range: 432 Mhz < 729.15 MHz in code < 916 Mhz

Clock Division Input (<u>Code</u>)

- System clock division: 1-2, **1 in code**
- Video timing system clock frequency: 200-700 MHz, 700 MHz in code
- Video timing pixel clock frequency: 80-140 MHz, **140 MHz in code**
- Video timing pixel clock division: 5, 5 in code

Index	Byte	Register Name	RW	Comment	Re-Time	Default (HEX)	Embd DL
0x1120	[7:0]		Minimum video timing system clock divider RO value			00	
0x1121	[7:0]	min_vt_sys_clk_div	RO	value Format: 16-bit unsigned integer		01	
0x1122	[7:0]			Maximum video timing system clock divider		00	
0x1123	[7:0]	max_vt_sys_clk_div	RO	value Format: 16-bit unsigned integer		02	
0x1124	[7:0]		1			43	
0x1125	[7:0]			Minimum video timing system clock frequency		48	
0x1126	[7:0]	min_vt_sys_clk_freq_mhz	RO	Format: IEEE 32-bit float Units: MHz 200 MHz		00	
0x1127	[7:0]					00	
0x1128	[7:0]			Maximum video timing system clock frequency		44	
0x1129	[7:0]	max_vt_sys_clk_freq_mhz	20			2F	
0x112A	[7:0]		RO	Format: IEEE 32-bit float Units: MHz 700 MHz		00	
0x112B	[7:0]				· · · ·	00	
0x112C	[7:0]			Minimum video timing pixel clock frequency Format: IEEE 32-bit float Units: MHz 80 MHz		42	
0x112D	[7:0]					AO	
0x112E	[7:0]	min_vt_pix_clk_freq_mhz	RO			00	
0x112F	[7:0]					00	
0x1130	[7:0]					43	
0x1131	[7:0]			Maximum video timing pixel clock frequency		0C	
0x1132	[7:0]	max_vt_pix_clk_freq_mhz	RO	Format: IEEE 32-bit float Units: MHz 140 MHz		00	
0x1133	[7:0]	1				00	
0x1134	[7:0]	and a set of the other		Minimum video timing pixel clock divider value		00	
0x1135	[7:0]	min_vt_pix_clk_div	RO	Format: 16-bit unsigned integer		05	
0x1136	[7:0]			Maximum video timing pixel clock divider value		00	
0x1137	[7:0]	max_vt_pix_clk_div	RO	Format: 16-bit unsigned integer		05	

Clock Division Output (Code)

Output system clock division: 1-2, 1 in code

 Output system clock frequency: 200-916 MHz, 729.15 MHz in code

Output pixel clock frequency: 20-114.5
 MHz, **72.915 MHz in code**

Output pixel clock divider: 8-10, 10 in code

Ssddec24-proj006 | Video Pipeline for Computer Vision

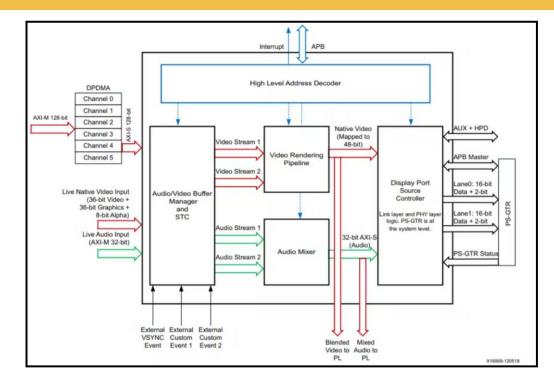
Index	Byte	Register Name	RW	Comment	Re-Time	Default (HEX)	Embd DL	
0x1160	[7:0]	the factor of the second se	RO	Minimum output system clock divider value		00		
0x1161	[7:0]	min_op_sys_clk_div	RO	Format: 16-bit unsigned integer		01		
0x1162	[7:0]	men es sus elle din	RO	Maximum output system clock divider value		00		
0x1163	[7:0]	max_op_sys_clk_div	RU	Format: 16-bit unsigned integer		02		
0x1164	[7:0]					43		
0x1165	[7:0]		RO	Minimum output system clock frequency Format: IEEE 32-bit float		48		
0x1166	[7:0]	min_op_sys_clk_freq_mhz	ĸŬ	Units: MHz 200 MHz		00		
0x1167	[7:0]			200 111 12		00		
0x1168	[7:0]					44		
0x1169	[7:0]	- max_op_sys_clk_freq_mhz -		Maximum output system clock frequency Format: IEEE 32-bit float Units: MHz 916 MHz		65		
0x116A	[7:0]		RO			20		
0x116B	[7:0]					00		
0x116C	[7:0]	min on his alk from mhr					41	
0x116D	[7:0]		RO	Minimum output pixel clock frequency Format: IEEE 32-bit float Units: MHz 20 MHz		A0		
0x116E	[7:0]	min_op_pix_clk_freq_mhz				00		
0x116F	[7:0]					00		
0x1170	[7:0]		[7:0]				42	
0x1171	[7:0]			Maximum output pixel clock frequency		E5		
0x1172	[7:0]	max_op_pix_clk_freq_mhz	RO	Format: IEEE 32-bit float Units: MHz 114.5 MHz		00		
0x1173	[7:0]	-				00		
0x1174	[7:0]			Minimum output pixel clock divider value		00		
0x1175	[7:0]	<pre>min_op_pix_clk_div</pre>	RO	Format: 16-bit unsigned integer		08		
0x1176	[7:0]			Maximum output pixel clock divider value		00		
0x1177	[7:0]	max_op_pix_clk_div	RO	Format: 16-bit unsigned integer		0A		

Input Freq / PLL1 Freq (in Datasheet)

• 280 Mbps Pix Rate for 4 Lanes

Pixel rate: 280 [Mpixel/s] (All-pixels mode)

• => 140 MHz Video Timing Clock Frequency (VTCK) from datasheet


• PLL1 Freq = VTCK * PLL1 multiplier (**5 in code**) = **700 MHz**

PLL1 Pix Rate vs PLL2 Data Rate

- If, Pix Rate of PLL1 domain < Data Rate of PLL2 domain, data is always correctly output from the sensor
 If Pix Rate of PLL1 domain > Data rate of PLL2 domain, Else If de-rating (binning and sub-sampling without resize), FiFo can handle.
- PLL1 Pix Rate (280 Mbps) < PLL2 Data Rate (2.92 Gbps)

=> "Data is always correctly output from the sensor"

DisplayPort

